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ABSTRACT

Marshall and Olkin (1997) proposed a new method to establish more flexible family
of distributions by adding a parameter to baseline distribution. In this article, Marshall-
Olkin moment exponential (MOME) distribution is introduced. Various structural
properties of MOME distribution including survival function, hazard rate function,
ordinary moments, moments about mean, conditional moments, Renyi’s entropy,
generalized entropy and median expressions are derived. Maximum likelihood (ML)
method is applied to obtain parameter estimates of the MOME distribution and a
simulation study is conducted to check the convergence of ML estimators of the
parameters of MOME distribution. Application to a real data set is carried out to illustrate
the flexibility of the model.
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1. INTRODUCTION

Marshall and Olkin (1997) introduced a new family of distributions by adding a
parameter to obtain new families of distributions which are more flexible and represent a
wide range of behavior than the original distributions. Moment exponential distribution
plays major role in the analyses of lifetime and survival data. Many researchers used the
Marshall-Olkin method to propose new distributions and studied their properties and
parameter estimation. Ghitany et al. (2005) showed Marshall-Olkin extended Weibull
which can be obtained as a compound distribution from exponential distribution. Since
2005, the Marshall-Olkin extended distributions have been widely studied in statistics
and numerous authors have developed various classes of these distributions such as
Marshall-Olkin extended Pareto (Ghitany, 2005), Marshall-Olkin extended gamma
(Ristic et al., 2007), Marshall-Olkin extended Lomax using censored data (Ghitany et al.,
2007) and Marshall- Olkin extend uniform distribution (Jose & Krishna, 2011).
Moreover, the reliability properties of the extended linear failure-rate distributions were
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studied by Ghitany and Kotz (2007). Jayakumar and Mathew (2008) proposed a method
based on adding two parameters in to a family distribution and considered as
generalization to the method suggested by Marshall and Olkin (1997). Gupta et al.
(2010a) estimated the reliability from Marshall-Olkin extended Lomax distribution.
Gupta et al. (2010b) studied the effect of the tilt parameter on the monotonicity of the
failure rate and estimated the turning points of the failure rate of the extended Weibull
distribution. Gui (2013) introduced Marshall-Olkin power lognormal distribution and
studied its statistical properties of the new distribution. Cordeiro and Lemonte (2013)
studied some mathematical properties of Marshall-Olkin extended Weibull distribution.
Also, they determined the moments of the order statistics and discussed the estimation of
the parameters using maximum likelihood method. The moment exponential (ME)
(or length biased) distribution was proposed by Dara (2012) and discussed hazard and
reversed hazard rate functions of ME distribution. They used the probability density
function (pdf) of ME distribution as:

g(x;B)=p*xe ™, x,p>0. @)

The aim of this paper is to define and study a new lifetime model called Marshall-
Olkin moment exponential distribution. Its main feature is that one additional parameter
is inserted in equation (1) through Marshall-Olkin’s method to provide more flexibility
for the generated model.

This article will be organized as follows: In section 2, we define Marshall-Olkin
moment exponential distribution and provide some plots for its pdf and hazard rate
function (hrf). Some of its structural properties are also derived in section 2. In section 3,
the maximum likelihood (ML) estimates of the unknown model parameters are provided.
Application to a real data set is performed in section 4. Finally, in section 5, we provide
some concluding remarks.

2. THE MOME MODEL AND SOME OF ITS STRUCTURAL PROPERTIES

In this section we define a MOME distribution. Here, we also find its pdf, cdf,
survival function, hazard rate function, moments about origin and about mean,
conditional moments, Renyi’s entropy, generalized entropy and median expressions. A
simulation study is conducted to check the convergence of ML estimators of the
parameters of MOME distributions.

i) Marshal Olkin’s ME Probability density function
Marshal Olkin’s (1997) defined probability density function of random variable X as

of (x)
X) = >0 —ao<x<on @)

(1—&E(x))

From (1) and (2) we can obtain the Marshal Olkin’s ME distribution. The pdf of
MOME distribution is
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where g(x)>0forx>0 [g(x)dx=1, (3) is MOME model with base line
0

distribution is an ME distribution (1).

Pdf’s Graph of MOME distribution
By fixing o and changing B (and vice versa) different shapes are as under
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The pdf of MOME distribution by fixing B and changing o (and vice versa)
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ii) Cumulative distribution function of MOME distribution

(t) dt

G(x)=

O —x
«©«

t

i ate P
p? 0 -
1—&[1+J P
p
after some simplifications
—X
1—(1+;Je p
G(x)- ~
l—(l—a)[l+;je p

where G(0)=0, G(x)=1

G(x)=

2dt

O —x

X a,p>0 (4)

iii) Survival function of MOME distribution
The function S(x) =1-G(x) = P(X > x) is called survival function or reliability

function.

ocE(x) _
S(x) =1-G(x) = ———, >0 where S(x) =G(x)
1-aF(x)
al+ e B
$(X) =—————,%,a,B>0 (5)

_ X, g
1-al+-)e P
B
is survival function of MOME distribution.

iv) Hazard rate function
The hazard rate function is defined as

9(x)

h(x) = 2222

(X) 500
X

ot

Graph of hazard rate function of MOME for various values of o and 3 are

h(x) = % 0,p>0x>0 (6)
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V) Reverse hazard rate function
Reverse hazard rate function is defined as
(x) = 9(x)
G(x)
_X
1 axe P
— X 0,B3>0 @)

vi) Mills ratio
Mills (1926) introduced the a ratio called Mills ratio defined by the equation as

=500

For the proposed MOME distribution Mills ratio is
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me) =8 @+ 1-&[1+5)e B | a,B, x>0 ®)
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vii)Mean residual function
Mean residual life function (MRLF) e(x), for a random variable X with E(X) < oo, is

given ase(x) = E(X —x|X > x). It computes the average lifetime remaining for an

item, which has already survived up to time x. it is given as e(X) = S(l ) ja(t)dt
X X
¢ _t
1 - a(l+-)e P
e(x) = | P dt
S(x) x _t
1-a(l+-)e P
t
put —=u
p
© —-u
e(x) = of @+u)e

S(x) x 1-a(1+u)e™
p

7 W TN RN |
e(x)—s(x) il—&(l+u)e‘“ du aln{l ot(1+[3)e J
B

By using following formula

r(k+j) . °°
(k= J)'zJ and T'(s,x)= [t e dt
X

T (k)(j)!
therefore, we have

2 e 24 (‘i) (i+1)x
- _du= T VL T1lk+1, ,o,B>0
il—c‘x(1+u)e‘” : Eoza k+1r{ ’ B P>

B

finally,

Cap | e do (d) (i+1)x) 1 X —%
e(X)_S(X) jZ::OkZ::OOLJ Wr(k+l'T —aln 1—(1,(1+B)e

and hence
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e(x) = L [1— &(1+%)9_BJ x
1+ é)e_E

©)

viii) Vitality function
The vitality function v(x), of a random variable X with an absolutely continuous

distribution function F(x) is given as v(x) =E [X |X > x] = % [tdF(t)
X) x

V(x) = %Tt f ()t

a < te P
= d
BZS(X)£ Y t

Ll—a[utje BJ
B
t apf % u’e™
Put —=u v(x) = | du,

B S(")%(l—&(ﬁu)e‘” )2

after some simplifications, we have

S(x) j=ok=0
g{l—am)e_ﬁ] F(k+3, X(J'+1)J
_ & b i 10
-t SRt e
p

where (s, Xx) = Ofts’le" dt .
X
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ix) Moments of MOME distribution
Moments about zero (Raw moments) for MOME are

E(Xr):zxrg(x)dx

i=0k=0 ( 1)k+r+l
S WEPIRC Ay p’
E(X )z(xgogoal (d)wr(k+r+2). (11)
The proof is simply by comparing both methods.
, A e . B
”1=“§Jk§°"(¢)<l+l)mr(k+3) (12)
W—as Y a) ({)(i+D) i T (k-+4) (13)
j=0k=0 k (j+1)k+3

ooy 3 a) (j)(j+1)—[33 I (k+5) (14)
j=0k=0 K J +1)k+4

Rl et ({)(i+D) p* I (k+86) (15)
Er=N (j+1)
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Table 1

Values of the Moments about Orlgln for Different Values of a and §
o,p iy Mo T g
05,1 1.52 3.82 13.72 129.1
05,2 3.05 15.27 109.74 1032.62
0.5,3 4.6 34.4 370.4 5227.65
09,1 1.92 5.62 22.1 109.4
0.9,2 3.844 22.46 176.75 1750.32
0.9,3 5.8 50.54 596.54 8861
19,1 2.5 8.14 38.98 207.65
1.9,2 5.03 35.26 311.87 33224
1.9,3 7.55 79.33 1052.36 16819.6

Values of the each moment about origin increases for increasing values of a and f.
Moments about mean (central moments)
The rth moment about mean

E(X—p) =J(X-p) g(x)3dx
0
Using the series

(a=b)* =3 (-2 (£)b* (a)}"

0

- %)

1=0

! (.f)fx”ga)dx

from (11) we can easily deduce the following

r-I Br_l —
jx g(x)dx = ajzwzoa ( )(j+l)k+r_l+1l"(k+r 1+2)
r r ; o ] i (i Br—l
E(X—w) =a X (1) (7)) 2 23 (3 )(Jl)mr(k”—'ﬂ) (14)
Table 2

Values of the Moments about Mean for Different Values of o and p

a,f M2 U3 Ha

051 1.51 3.32 82.62
0.5,2 5.96 26.76 286.48
09,1 1.94 3.99 23.23
0.9,2 7.72 30.98 351.12
191 29.01 9.18 5.912
19,2 54.03 34.3 479.8
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Table 3
Moment Ratios for Various Values of o and B

a,p By B,

05,1 1.78 36.2
0.5,2 1.84 8.1
09,1 1.47 6.2
0.9,2 1.43 5.89
191 0.06 2.96
1.9,2 0.086 0.16

For o =0.9 and =2 the MOME distribution is approximately symmetric and
normal.

X) Conditional moments
The rth conditional moments is defined as

r 1 %,
E(x x$x):@£t g(t)dt
1 X of (t)
- fr——2 _dt
G(x)o (1—&F(t))2
1 r2+j)x, =
T

B
J‘ u r+k+1e—u du
0

Xi) Inverse moments
The inverse moments are calculated as

E(X )4 = I X" g(x)dx
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I(k-r+2),r2<k, 7)

xii)Median
Median of MOME distribution can be obtained by solving G(m) =0.5, where G(m)
is the cdf of MOME distribution.

1-(1+ a)(1+%je,§n 0 (18)
Table 4
Values of the Median for Different Values of a and f
B o
0.5 1 2 3 4 9
0.5 0.59 0.84 1.145 1.35 1.49 1.945
1 1.19 1.68 2.29 2.7 2.99 3.88
2 2.378 3.36 458 54 5.98 7.78
3 35 5.04 6.87 8.1 8.98 11.67
5 5.94 8.4 11.45 135 14.97 19.45

Values of the median increase for increasing o and f3.

Xxiv) Entropy
Simply entropy means randomness. The idea of entropy in information theory was
developed by Shannon (1948). It is a quantitative measure of uncertainty of
information related to a random phenomenon. Like measure of dispersion, low
entropy in a distribution indicates more concentration and more information as
compared to high entropy. Entropy is very useful in reliability and survival analysis
problems.
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xv) Information Function (IF)

F=€[(a00)J=T(000) a0
= O(jj(g (x)) dx :Z(l—&f(x))zs of (f (x))sdx,
And after some simplification, we have

T(2s+])

. K .x
LY Y gl NT[X) ¢ X o7
e LS F(ZS)J!(k)i(Bj fopt
Feo¥ $a L 20)) (')[ : Jk+s+lr(k+s+1) (20)
jok=0  I['(2s)jIp*™ K j+s

xvi) Re'nyi Entropy

Entropy has been used in various situations in science and engineering. The entropy
of a random variable X is a measure of variation of the uncertainty. If X is a random

variable which distributed as MOME distribution, then the Re'nyi entropy, for p >0,
and p =1, is defined as

12 () = (1—p)* log, (T( f (x))pdxj.
0
Let, IP = ojo(g(x))"dx, then 1P can be written as follows:
0
Y X\
{ax e B] {1—&(“%} ‘3] dx.

(204 j)!(ij[}p+1l“(k+p+l)

ol
(Zp)l J |( J +p)k+r+l

IP=
0

:ap

M
Tt

[a—
I
o

(2p+ j)![ijﬁp+ll"(k+p+l)

=(1-p)1 PRSI
IR(X) (1 p) Ogb o jZ:ZOkZ:ZOOL (zp)!j!(j+p)k+r+1
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xvii) Generalized Entropy
Generalized entropy is defined as

3 vt =1
)= A(r-1)

where
v, = [ x*f(x)dxand zz=mean

—00

and for MOME distribution

10)=— - (23)

xix) Estimation of parameters
Suppose Xj, X,,..., X,,is a random sample of size n drawn from equation (4.2) of
MOME distribution
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L(x; o, B) = SE ~a,B,x>0

B“ﬁ[l—&(ﬁé)e

i=1

=™ | <

Its log-likelihood function is

I(¢a,B)=nlna+3 Inx —i(%]lne—znlnﬁ—zi In[l—&(l+§)eBJ

i=1 i=1 i=1

The maximum likelihood estimators of unknown parameter o and B is that value of
parameter which maximize the likelihood function, that can be obtained by solving

the equations
X

1+ X)e B
8|(X;0.,[3):£+ n _i B

oo, a o-1 ia X _x
1-&(1+E)e B

56 P —as e P U
Aop) & x) 2, 8 B’ b
oB i1 p2T B ia [ X XJ

Putting 6_I and a equal to 0
oa B

@+ Xye B
LU “_1 -3 P -0 (24)

a a i=1 X

1-6(1+ Xy B
§
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pESRELIP) =0 (25)
i=1 B B |_l[ X A]
1—&(1+E)e B

(24) and (25) are not in closed form therefore for parameter estimation by maximum
likelihood method we shall solve them numerically.

xx) Pdf of order statistics

The pdf of ith order statistics ~ X; , say g; , (x) can be expressed by using equations

(_1)I (F (X))Hi |
=0 (i-1)(n-i)(1-aF (x)) "

. (-2) {1(1+§Je;Jl+i
9in (X)=a—n!xe p r_H X
(i—l)!(n—i)!Ll—&(lJr;JeB}

If 0< o <1above function become

n—

in (X)=on!f(X)

g B x>0

3 o nd J jHl ki1
Gin (%)= (x) EOI:OEOUJ e (F(x))
X N jHl—k+i-1
= o n-i j _Z

where

an!(-1)' (1-a)’ (-2)"™

Uitk =i ()= (i-1)1(n—i)! (£)()

- ~1)F
For o >1 we write 1—&F(x):o{l—mjthen

=]
!

Gin (X): f (X)

s

—
1l

o
I

ij| (F (X))j+l+i—1

0
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JHl+i-1

gi,n(x)zﬁize_[}é:__;cj,l 1—(1+%Je_B (27)
where
n(-1) (a-1)" ..
oy oy (o) = (-1) (o-1) (1501)

o (1)1 (n—i)!

3. APPLICATION OF MOME DISTRIBUTION

To illustrate the performance of purposed MOME distribution we consider the data
set obtained (see Aarset (1987)). It is a strength data measured in GPA, the single carbon
fibers, and impregnated 1000-carbon fiber tows. Single fibers were tested under tension
at gauge length 1 mm. The data are provided below:

2.247, 2.64, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581,
3.681, 3.726, 3.727, 3.728, 3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05,
4.063, 4.082, 4.111, 4.118, 4.141, 4.246, 4.251, 4.262, 4.326, 4.402, 4.457,
4.466, 4.519, 4,542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698, 4.738,
4.832, 4.924,5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06

Before progressing further first we provide the histogram of the strength data in
Figure below.

05 10

04 08 o

03 06

02 04 Ki

0.1 02 '

00+
3 4 5 6 25 30 35 40 45 50 55 6.0

Fig 4.13: Histogram of Sample Data Fig 4.13: cdf of Sample Data

Note: From the above graph it is immediate that the data are unimodal.
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F(x) - Sample cdf
1.0 = = = Weibull cdf curve
I Gamma cdf curve
..... MOM cdf curve

06 —-= Ext. W cdf curve
04

0.2

0 e

25 30 35 40 45 50 55 60
Figure 4.14: cdf Graphs of Weibull, Gamma, Extended
Weibull and MOME Distributions

It is the comparison of cdfs of four mentioned distributions. It represents that graphs
of all cdfs’ have approximately same pattern.

Table 5
ML Estimates and Goodness of Fit Statistics for Strength Data
Parameters Weibull | Gamma EW TEW EXTW MOME
(A,K) (k,2) (abc) | .B.ka) | (ab,) (o,p)

6019.81 26.283 [1.0x1077| 0.23471 |266.91145| 2201.81
5.7057 0.1620 | 0.000166 | 0.0001 0.00001 | 0.42073

Estimates - - 5.70572 0.0001 | 25.25964 -
- - - 0.000001 -
Iikelz_lci)r?c_)od —68.9336| —68.379 | —68.9336 | —68.56634 —67.9508 | —67.456
AIC 141.867 | 140.758 | 143.8672 | 142.33 141.9 138.912
BIC 145918 | 144.809 149.94 148.409 | 147.976 | 142.963
Rank 5 3 5 4 2 1

EW: exponentiated Weibull distribution; EXTW: extended Weibull distribution;
TEW: transmuted exponentiated Weibull.

From above table 5 we compare MOME model with Weibull, Gamma, EW, TEW and
EXTW, we note that log-likelihood of MOME distribution is more than all distribution
and its AIC and BIC both are less than AIC and BIC of other competitive distributions.
So, we prove empirically that MOME distribution can be better model than all
competitive models.



30 Marshall-Olkin Moment Exponential Distribution...

4. SIMULATION RESULTS

We simulate 10,000 samples of size n (30, 50, 100, 500) from MOME distribution
with the specified values of parameters taking a=0.5, p=0.5 in table 5 and a=2, p=2.
Equations (24) and (25) are the expressions for estimating the MLEs of the model
parameters, which we use here for estimation of the distribution’s parameters from the
sample. A simulation is done by R Language. The following tables provide the
information on estimated values, Bias and MSE.

Table 6
Simulation Results

Parameter True Sar_nple Estimated Bias Variance MSE

value size value
30 0.659892 0.1599 0.115816 | 0.141384
A 05 50 0.613129 0.113129 | 0.062266 0.07506
100 0.565157 0.065157 | 0.020461 | 0.024706
500 0.5390341 0.03903 0.018358 0.01988
30 1.82815 0.17185 0.136606 | 0.166138
B 9 50 2.08146 0.08146 0.12442 0.13106
100 1.93215 0.06785 0.074591 0.07919
500 1.9502 0.0498 0.033089 0.03557

Table 7

Simulation Results

Parameter True Sar_nple Estimated Bias Variance MSE

value size Value
30 1.84933 0.15067 | 0.579232 | 0.601933
o 5 50 2.1357 0.1357 0.390657 0.40907
100 2.05013 0.05013 | 0.336087 0.3386
500 1.97363 0.02637 | 0.151871 | 0.152565
30 2.24336 0.24336 | 0.166985 0.22621
B 5 50 1.88498 0.11502 | 0.065256 0.07848
100 2.10112 0.1011 0.058283 0.06850
500 2.00286 0.00286 | 0.018693 0.01870

5. CONCLUDING REMARKS

Adding parameters to a well-established distribution is used for obtaining more
flexible new families of distributions. Marshall and Olkin (1997) used larger class of
distribution functions by inserting an additional parameter in order to obtain a distribution
function which contains the original one as the special case. In this paper, Marshall-Olkin
moment exponential (MOME) distribution is introduced and properties of MOME
distribution including survival function, hazard rate function, moments about origin,
moments about mean, conditional moments, Renyi’s entropy, generalized entropy and
median expressions are derived. It is proved, empirically that, MOME distribution can be
better model than all competitive models. A simulation study for the MOME model
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parameters are also included by taking different sample size. Bias and MSE of estimates
of the parameters of MOME model are going to decrease for increasing n.

10.

11.

12.

13.

14.

15.

16.
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